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PREFACE

7-the research repoited in this Memorandum is a part of a co'ttnuin1,,

investigatiou of the effects of ground shock on underground structures.

This study wafs prompted in general by a questioning of the accuracy of

free-field stress measurements, and in particul-r by an interest in

the effects of gage design on these measurements. Most of the current

free-field stress data available are derived from pa idle-velocity mea-

surements; very few are obtained through actual stress gages, a long-

recognized inadequacy.

It is therefore the purpose of the Memorandum to investigate the

feasibility of an on~tnidirectional stress gage and to provide theoreti-

cal background for the design and use of such a device.

Doctor F. C, Moon is presently affiliated with Princeton University

and is also a consultant to the RAND Corporation.



SUMMARY

This Memorandum presents an analysis of the transient response ox

the pressure in an embedded elast4 - inclusion due to an incident com-

press ,nal wave. It represents a continuing effort at RAND to evalu-

ate transducer diffraction effects on ground stress-wave measurements.

Included is an outline of a design for an omnidirectional pressure

transducer with a response capable of being interpreted in terms of

the theoretical solution presented in this Memorandum.

Both the frequency response and transient behavior are treated.

It is found that the pressure or mean stress at the center of the in-

clusion will be insensitive to the curvature of the incident wave.

The primary source of distortion between the inclusion pressure and

the free-field pressure in the incident wave is internal reflections

in the inclusion. An early time analysis reveals that thete can be

minimized by matching the acoustic impedance (product of density and

compressional wave speed) of the inclusion with that of the matrix.

An estimate of the time for these reflections to decay due to radia-

tion "damping" is fo!ind to depend on the impedance ratio.

Two methods are presented for obtaining the total pressure re-

sponse due to a ncnperiodtc incident wave. The ft. t uses the calcu-

lus of residues ind the high-frequency resporise to sum the resulting

infinite series. The second method proceeds by solving the inverse

problem: to find the incident wave pressure in terms of the inclusion

pressure. This latter method is presented in the form of an inteRral

equation for the inclusion pressure which enables an exact explicit.

solution to be found between successive reflectio.is.
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SYMBOLS

a - radius of inclusion

B - ratio of bulk moduli (I B iB2)

c . ratio of compressional-wave speeds (c c dl/Cd2)

F[ I - Fourier transform

in(x) - spherical Bessel functions

k - ratio of compre ,ional-wa'e speed to shear-wave Ec9eed

(k = Cd/C s )

L[ I - Laplace transfon.

P - pressure at center of inclusion

P - pressure in incident compressionai wave

P (x) - Legendre polynomialsn

t - t ime

a - normalized frequency (a a/cdi

y - negative imaginary part of normalized fr-auency

- ratio of shear moduli ( lu

- ratio of mass densities (0

T - time normalized with respect to half transit time ( "cd:j

a - real part of normalized frequency

- circular frequency

Subscripts

I - matrix material

2- inclusion material



I. IN TRODWICTlIC',

r. ong the manyv effects associated with a nuclear-explosion-induced

ground hocik! that must oce considered in the des ign of a survivable sy's-

tern is th- mag-il tide of the stress in the grouind shock. In factL, most

design seif :aions of a haqrdened svstem us-all call for structurp';

to with9tand a certain stregs level. Thus the abilities to predict and

to measure free-fil-I stress are of prime importance in any nuclear ef-

fects tests.

Mobt of the exi~ting stress gages are dIevised primarily for s;tatic

me~asurements and ma-, not be applied to dynaTmic stres3 measuiro~ient.

Therte nave been many recent studies attempting to praue etter stress;

gages capable of measuring hlAgh-intezi.sirx ground stress--, but usuailly

because of their comblex geometric scoa precise anailysis of the

wave-cransducer interaction is impo~sl[b le: hence, 0,he 1nteri ertti-n

cf data is in dioubt. A strain-sensitive transducer of si-lr, sha;-e

and construction is needed], with a response -apable o-F e analvpd

by thE methods of the t co rv ~t e las tl wv'e pogtinu~itr

A\ transducer to m easu re . r;,und stresses ~sclhave Ct, -I i' Ii

chsr ioterist ic-s

-Oi~.e strengt. s~ ttntn.u~ sr i

!-',iiit ic prcpprties t rdcteaubi'stra".'.

1 S e T- ot V V iit or 0 n r e 11 C T

>~~~tmmni-ie oversot, and arge int Tnal T i-

iv lo

~*.~onat~~li~ wth ti~ruauxtl !a. . cinirmett

Phe trAnslucet- weprne t: e Am'. V e5 1Ai SiC ;ped C I'

ciuR Ion to be bur-ied1 ir the gio:daien ttv hruhscr

to 1,,v mean t regs or pressure at ts on 'i;,n . jo a ievice i

91tive to i-3 angular orieitat ion- bonbeu'; f its sv "metrv a1nJibe

Cause of the scu-lar nature ot t ne mean st rvu-, or pr:essure. .. \ onr firs-t

task we will examine the response, chr;tr-ts I~ach 'pIn~iVn
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n meet te requirement of high strength, the material of the sphere

will most likely have elastlc properties different from those of the

ground material. Hence, diffraction effects are likely, and their ef-

fec, on the response of the transducer should be examined. Toward this

end we treat the problem Df the diffraction of a transient compressional

pulse by an elastic isotropic spherical inclusion bonded to an infinite

elastic isotropic matrix. Then some design criteria are presented for

the selection of the material, size, -d respc-se times -f a spherical

strain transducer.

Ii
I
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ii. FPEQUENCY RESPONSE OF AN ELASTIC INCLUSION

The study of the response of an elastic inclusion has received

much attention in the last decade. These studies have dealt mainly

with harmonic compressional waves. (2,3) Recently, however, Mow
(4 ,5 )

has examined the transient behavior of a rigid inclusion and has cor-

related the separate displacements of the Inclusion and the ground.

He found that 'he inclusion and free-field displacements could diverge

at early times even for equal densities, satisfying an essential cri-

terion of field testing. Similarly the stressos in an elastic Inclu-

sion are expected to differ in both magnitude and phase from those in

the free field. The extent of this divergence and the factors th t

will minimize it are discussed below,

BASIC EUAT!ONS

Since the har-monic solution has been discussed elsewhere, (3) we

will only briefly review the relevant equations.

We suppose both the inclusion and matrix to be homogeneous, iso-

tropic, linearly elastic mediums in which the usual stress-strain re-

lationships hold. For each material there are two elastic constants

and two w.ave speeds: a compressional or longitudinal wave cd, and a

shear or transverse wave c
s

Outside the inclusion we imagine a source uf either plane or spher-

ical hanmonic compressional waves with a displacement potential given by

P iw(z-C dlt)/cdl
= 0 e plane wave (1)

iw(R-Cdlt)/cd

S0e R dl dl spherical wave (2)

R

u 71 (3)

where z is an axial coordinate (Fig. I), R is the distance from the

source to the field point, and u is the displacement. The potentials



J.-I

x

.- (mprecsional
,. wave front

Fig. 1 - Geometry of sphericai inclusion
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represented iy Eqs. (1) and (2) give the displacement in a medium Ath-

out an inclusion. The presence of the inclusion will scatter waves into

the medium and refract waves into the inclusion. The scattered and re-

fracted fields will contain both :ompressional and transverse waves.

Inside the inclusion the motion is of the form of standing waves

or vibrations, ind the refracted displacement potentials take rhe

form,

u = V + V X (e

n n .(W,/Cd2) Pn (cos 0) (4)

n=0n,=O

where j (a) are spherical Bessel functions and P kx) are Legendre poly-
n( n

nomials.

AVERAGE AND CENTROIDAL STRESSES AND DISPLACEMENT

The induced stresses are derived from Eq. (4) using the generalized
(3)

Hooke's Law and have been tabulated by Pao and Mow. The stresses and

displacement-, depend on all the excited modes in the inclusion. However,

if the inclusion is being used as a transducer, then knowledge of the

stresses at one point will be sufficient. The most logical point to ex-

amine is the origin.

Using the small-argument limit for the spherical Bessel functions,(6)

n

1 n( )c-O 1.3.5 ... (2n + 1)

the d placement and stresses at the origin become
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u - 3C! (I 2k2D1) (5)

T -P + 2Szz

T -T -P-S
xx yy

2
P -1/3 (T + ' + Tz) -B2  - C (6)

xx yy ZZ 2
Cd2

S 2,,Z w)2(C 2 2 D5 -3- -5 k ,2

where k, 2 cd2iCs2 is the ratio of compresbional-wave speed to shear-

wave speed in the inclusion. Thus the !isplacement at the origin de-

pends only on the first dilatational and shear modes. The mean pres-

sure P at the origin depends only on the symmetrical modes, and the

maximum shear stress 3S/2 depends solely on the vibratory modes asso-

ciated with C2 and D2.

Similar remarks apply 7or the ave, "ge displacement or motion of

the center of mass of the inclusion and average preaure over the en-

tire sphere, i.e.,

i -e (a 2D (7)

<P> <-B 2 V.u>- -B2 (a2 C0  (8)

dd2 22/

where a 2 = ca - wa/cd2 and 82 - a/c s2'
It is evident that the behavior of either the stresses at the or-

igin or the average mean pressure depends only on the frequency response

of the coefficients Co, C2, and D2. These coefficients are detexinined
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from the boundary conditions. For a bonded inclusion, the boundary

conditions require continuity of stress and displacement, i.e.,

(s) (1) u(r)U +& =U -

r r r

(s) + (I) U (r)

e 0 =Ue

on r = a (9)

T(S) + T (I) T (r)

rr rr rr

(s) + T (I) T (r)
rO rO re

where s, I, and r indicate "scattered," "incident," and "refracted,"

respectively. For our purposes, it is sufficient to know that C de-

pends only on the first and third boundary conditions of Eq. (9). That

is, the pressure at the origin or the average pressure cver the entire

inclusion does not depend on whether the tangential dispiscements or

shear stresses at the interface are continuous. Thus the same value

of C will result if "slipping" boundary conditions of zero shear stress

on the Interface are applied.

u(a) + u(T) u (r)

r r r

(s) +T(1) T (r) (10)

rr rr rr on r a

(s) + (I)r rO rO

0 -
rtO

The induced pressure at the center of our transducer inclusion will

thut; be insensitive to the bonding or grouting as long as the ratrix

These equations are given In a more expliL it form i' Ref. 3.
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makes normal contac with the sphere. For this reason, we study only

the frequency and transient response of the mean pressure at the ori--

gin of the inclusion. The coefficient C0 is given by the expression 
3 )

C . iaeici a(a +
0 0 PC0

- [4(I~ ~ ) (a + i) + ici2](C}-l(11)
k

where

0 plane wave

No-

So --O ho(ad) spherical wave

where , is the distance from the wave source to the inclusion center,

and h (x) is tI zero-order spherical Hankel function.

Let us next examine the consequences of choosing either a plane

or a curved incident compressional wave. The mean pressure due to the

incident wave is given in the two cases by

PC a -BIU(1) -BIV2() BI 2V
c~ ~ )-t 2 (21 3t~

where t satisfies the wave equation.(6 )  Substituting Eqs. (1) and (2)

into the above gives

t0 plane wave (13a)

S0 -c h0  ) spherical wave (13b)

where h0 (x) e IiXt.
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Comparing Eqs. (13a) and (13b) (6) we find that the relationship

between the incident pressure and inclusion pressure is the same, i.e.,

iae 
- ia

P(c) c-H() - c

H(C) a(c( + i)j0 (cL) 2 [( ) ia2i ( a}I

We need no longer distingtish between spherical or plane waves, since

the response is identical in both cases. The same can be said for the

displacement and shear stress ;. In fact, as long as a quantity de-

pends on only one mode, the reiation between its value inside and its

value in the free field remains the same whether the incident wave is

plane, spherical, or generally dilatational. However, for a quantity
th

such as i , the axial stress which- depends on the zero and second

modes, this is not true; i.e., if

I

T (r = 0) r I g (w) plane wave
zz- zz p

I

T (r 0) z I g (w) spherical wave

then gp(W) # g(10). This gives further impetus to studying the mean

pressure P rather Lhan, for example, the axial stress T.

Examining the frequency response for the mean pressure at the or-

igin, we observe chat at low frequencies, i.e., 0 O, : 0

,-0cB t7z k 2 l
JoG) , lC) (V),/

1

This limit yields the same pressure as the ,;tatic problem of a spheri-

cal elastic inclusion embedd*'d in an elastic matrix with hvdro-,tatic
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pressure P at infinity. The ratio of output to Input P/P is aC C

constant at low frequencies and can be called an amplification or gain

factor A The gain factor is presented in Table 1 for different in-

clusion materials in a granite matrix. At high frequencies

P(s) - P Ewi ia (PC cos Ea - i sin a)- I  (16)
c B

The product Pc is called the impedance razio, and its departure

from unity gives a clue to the nature of the reflction of dilatation

waves from the boundary separating two media. If pc = i, the gain is

again constant, whereas if the impedance ratio departs from unity, the

denominator has periodic maxima and minima. Thus the gain exhibits

resonance peaks with frequency, or the internal reflections reinforce

one another at certain frequencies. The resonances at large frequency

are easily found: for pc > 1, Ea - n /2, and n an odd number,

(P/P c)max 3 ( )3/ (17a)

and for Pc < 1, Za - nw/2, and n an even number,

(P/P)MA- . Z2/J (17b)

The frequency response curves using the exact relation Eq. (14)
,

are shown in Figs. 2 through 5. They show the reso ,ances at the proper

frequencies when a is l~rge. Values obtained previously check the com-

puted maxima of these curvee.

An ideal transducer is one for which the gain or amplification

factor is independent of frequency. Thus for measurement of elastic

waves in granite, aluminum or titanium would make a better transducer

than plastic or lead, for example (Figs. 2 through 5). Furthermore,

we can cay that unless the matrix and inclusion tran:4ucer are "matched"

- 1), the internal reflections can mask the incident signal.

For discussion )f Cates A and B in Fig. 2, see page 20 and Table 2.
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III. TRANSIENT RESPONSE OF AN EMBEDDED ELASTIC INCLUSION

DIRECT PROBLEM

If the incident signal or pressure is nonperiodic, the inclusion

pressure at the origin may be obtained as an inverse Fourier transfo-.,

of the product of the gain A(a) (Eq. (14)) and the transform of the in-
(9)

cident pressure, i.e.,

P(t) f 1 A(ct)F[Pc(T)]e-iaT d

(1,8)

F[Pc (T)] HT PcWe dT

where P (T) would be the pressure at the origin in the absence of theC

inclusion. The time T is normalized by the time the incident wave

transits half the inclusion, i.e., a/c dl and a is a nondimensional

frequency.

Suppose P (T) has the formc

r 0, T < 0

P C(T) -

Pc f(), T > 0

where f(r) - e as t ®. In units of the half transit time a/cd1,

the pulse arrives at the inclusion surface at T - - 1. The time for a

compressional wave to transit the distance "a" in the inclusion mate-

rial is E. We should then expect the resporse

P(T 0

fUr t < -I + c.

A.
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Tc show that this is the case, the calculus of vpqidui, is used

to evaluate Eq. (18) and to show that all poles r f the integrand lie

in the lower half of the complex plane. (See Fig. 6.) In the exami-

nation of the function A() in the co., lex a-plane, we note that the

singulwities are determined by:

Real H(a) - 0
(19)

im H(a) - 0 J

It can be shown that the roots of Eq. (19) always come in pairs,

i.e., if a is a root, -a is also a root. To show that the imaginary

part of the root is always negative, we note that as real a - , where

a - - iy, the equations for the roots of Eq. (19) take this form

(where H(a) is given by Eq. (14)):

cos Q(-g cosh Zy - sinh Zy) - 0

sin EQ(cosh Zy - - sinh Zy) = 0

Thus the roots are determined by

Case I.: -E <1, sin D -0, cQ - n7/2, n even

(20a)

tanh y 0 .
p-- '  Y - YO

Cl ?x T3- > 1, cos El - 0, ED - nii2, n odd

(2Ob)
tanh c-0 - 1/ -

For high frequency, the radiation damping coefficient y approaches a

positive constant if DT 1.

Asterisk indicates conjugate.

t-



~-plane

Path for T 1I < 0

Fig .6- Path of integration in comnplex plane for the transient problem

-- ---------- ---I
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Since T- a < 0, there are no poles in the upper half plane, and

substitution of Eq. (14) for A(a) into Eq. (18) reveal& that P(i) 0

for T + 1 - c < 0, which agrees with our initial aupposition.

For Im a < 0

A(a) v e- 1 -

and P(t) for (T + I - > 0) is given by the sum of the residue of

A()F[f] in the lower half plane.

For the special case of a step function,

f e , A +0

it follows that

0, T < -1+c

P0(T) (21)

2F -(yj +ii?,j +1
PL 0 -B l H'( 1 ) T > -1 + c

where the sum is over the conjugate roots of H(a ) , 0 and the property

H'(-m*) - -H' (ai) has been trken into consideratin. For large J the

roots take the form given in Eq. (20).

The first term in Eq. (21) is, to within a factor, the incident

pressure. The second is a transient pressure due to diffraction and

internal reflection . The maximum rate of decay of the transient is

proportional to e 0 where 0 is given by either Eq. (20a) or Eq. (20b).

The normalized "damping" time is ]/y0" For a Rranite matrix and alumi-

num inclusion this time is 1.5 half tranoit times, whereas for a plastic

inclusion, 1/y - 30 half transit times,

The complete solution may be obtained by using the first fe roc'ts

of H(a) - 0, [ound numerically until Yj - Y0  The remaining terms in

tPrime sign indicates derivative.

H
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the series, using the approximation Eq. (20) for a,, constitute a Fou-

rier series and may then be summed analytically.

As an illustration, consider the cases for which the frequency re-

sponsE is calculated in Fig. 2 (the upper curve is close to that for

an aluminum inclusion in a granite matrix). In these cases the densi-

ties and compressional velocities are matched, but the shear speeds of

inclusion and matrix are different, i.e., p - 1, 1. The first few

roots and residues for each case are presented in Table 2, We observe

that the magnitudes of th, third and fourth modes are about one-half

of the first symmetric viLration mode of the inclusion in the matrix.

The relative importance of the higher modes was also found by Skalak

and Friedman (1 0 ) in studying the reflection of an acoustic step wave

from an elastic cylindrical shell. We note also that the real parts

of the roots came close to the peaks in the frequency response curves

(Fig. 2).

The pressure response to an incident compressional step wave at

the center of an aluminum inclusion in a granite matrix is given by

p(T) - P0 (22/9)I + (l.301)e ".2 5 (T+i)sin 3.532(- + 1) + 0 1

+i O.8465)e l540(T+l)sin 6.839(T 
1) + 4-

+ (0.6827)e-l'/l 9 (+l)sinflO.04(. + 1) + 6 1 +
t 3

for T > 0.

This curve is plotted in Fig. 7, using only the first three modes.

(Note that since E - 1, we cannot use Eq. (20) to analytically sum the

rest of the terms in the series.) Even though the series converges

slowly Ior any given time, the exponential radiation damping terms en--

sure that the transient will be negligible in a few transit times for

this case.
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Table 2

CALCULATED ROOTS AND RESIDUES FOR THE TRANSIENT RESPONSE
OF AN INCLUSION TO AN INCIDENT-WAVE FIEL.D

-i 10
' (,a) - a e nn n

n C e - Q- ia 0n n nI n

Case A. a 0. c 1 , w 2.0, kI 2 3.0, k - 6.0
1 2

1 3.532 - 1.251 1 0.5324 7- tan 0.5785

-1
2 6.83q - 1.540 1 0.3463 -tan 0.7803

3 10.04 - 1.719 1 0.2793 r - tan 0.8568

a . ... 2 2

Case B: c I., u 0.5, k - 6.0, k 2 3_1

1 1.381 -1.201 1.258 T , + tan -  0.882.

2 5.144 - 1.431 i 0.4087 tan 1.225

3 8.407 1.643 1 0.3071 r + tan -  1.116

4_ 11.61 1.7q3 1 0.2582 tan-  1.073

aSee Fig. 2.
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1.4 - -_-__
Appioximation using first three

13° _Incident pressure

0.8

4,

0.5

z

0.----.-__--

k' 3, -6, (See
0.2 .Fi. 2, Case A for

frequency response)

3 0.2 0.4 0.5 0.8 1 .0 1.2

Normoli7ed time r - tc da

Fig.7- Transient response of the pressure in an aluminum inclusion in a granite

rn'rix due to an incident compressional step wave
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LARGE-TIME AND SMALL-TIME RESPONSE

Let us now examine the behavior of Eq. (18) for T + or its

equivalent a - 0. For this case A(a) - A(O) A a constant, and the

remaining integral is the inverse of F~ff

P(T) A- A0Pc(T + 1) (22)

(It should be noted that the phase of the right-hand term is arbitrary

for T -+ co.)

For small times we examine Eq. '14) under the limit a - =, for

which Eq. (18) becomes

-1 (3 a (-T + 1 F If) da

P(T) 2 r - (-cos Ea- i sin Za) (23)

This may be inverted if we rewrite Eq. (23) in the form of a Laplace

transform, setting a - is

13 i. S(T+1)L~t]di3P(T) - P _- e (24)

B ).i T ( cosh -s + sinh Es)

or

P(T) - sinh 1 '' f'ds (24a)
, ncosh L + 0

where r .nh C o - IfE/E, Tc ' 1 and

P(T) P 3 cosh E e + (24b)0 "o '1-J., sinh (e + yO0) "

when tanh " Ec, c < 1. The intelrsla In Fqs. (K4&) and (24h) can be
-2zevaluated by expanding e hxer 1/cosh zI or l/uirth i in power. of e
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from which we see that Eq. (24) is a series of modulated step functions

separated in time by 2Hn. These represent reflections inside the in-

clusion.

Integrals of the form Eq. (.4) may be found in a table of inverse

Laplace traforms. (6,1 )  Finally we have, for small-time response,

Case 1 ("soft" inclusion): F E

-(2n+l)-¥ 0
P(T) . PO EP! 2 sinh y0  (-1)n e

B n-0

f[r + 1 - (2n + l)cIu[i + 1 - (2n + )c] (25a)

Case 2 ("hard" inclusion): ) < 1

i 3 - - (2n+i)E 0

P(T) . PO _ 2 cosh Ey n) eB n-0

f[- + - (2n 4- I'clu[: + I - (2n + 1)c] (25b)

where u([) is the unit step function.

These expressions are applied to a few examples as shown in Figs.

8, 9, and 10 for the case of an incident step pressure. For C:Ase I

66- I) the inclusion acts as an underdamped" transducer (Figs. Q and

10) and as an "overdamped" transducer for Case 2 (,, < 1) (Fig. q';.

The damping is due, of course. to the f,,ct that part of the reflected

waves is radiated out of the inclusion lntc the mAtrix.

If we try to extend Eq. (25) for large ti-e for the case of the

step Input, we obtain in both cases

whr w havPus (26

where w.e have used the f'ct that
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1 -(2n+iy ____(_) __

2-e 0 (-)e o 1
sinh 5y0 ' ecy,D- ihZ. n-0 cosh Eyo

Thus, ' :r the step input the short-time asymptote given by Eq. (26)

using the approximation Eq. (23) differs from the long-time approxima-

tion Eq. (22; by a constant. Tis difference will be discussed shortly.

The above factor represents the asymptotic maximum (minimum) in the fre-

quency response for the case 'FE < 1 (& > 1).

For the case _PC > 1

c2 / Y" ..-2 - 2 cy0m
+- = 2 cosh oe -I =-- e3 0B

is a measure of the amount of overshoot for early time.

We see that this formulation has the advantage over the Fourier

representation Eq. (18), since for a given time Eq. (25) contains a

finite number of terms. In the latter expression i/ZyO again plays

the role of a "transient damping" time.

For the case of equal impedances - 1, we return to the expres-

sion Eq. (18). The small-time expression is given simply by

-2

P (T) V f f(T + 1I
B 0

The small-time solution is exactly analogous to the penetration of

a compressional wave into an infinite acoustic barrier of material dif-

ferent from that of the matrix and normal to the incoming wave. For

that problem, if the acoustic impedance ratio is unity, there are no

reflections, but rather a delay in the signal, which is what we found

previously.
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IV. THE SOLUTION OF THE 11WERSE PROBLEM

While the goal of the analyst is to predict the output or response

of a transducer given the input, the object of the experimentalist is

the reverse. That is, the latter wishes to solve the inverse problem

of finding the input given the output of the transducer.

THE METHOD OF FOURIER TRANSFORM

Returning to Eq. (14), we write an expression for the free-field

pressure P in terms of the mean pressure P at the origin of the in-
C

clusion

P (T) ff -B -1 f e-icx(T-1)FrP]
c c 2-ff _

P Xt (e +2 ()+i~
{4(-i)(a + i)j 0(&)-[~L~)( ik + is]i (}da

(27)

One may readily perform this inversion if the integral form of

in(Z)(6) is used, i.e.,

(ca) " f eat dt
-1.

ir 2 I2

i) - - e (3t - dt

and if

3j 1 (Z) - zio(z) + J2 (2)]

The inversion is performed by switching the order of integration

and making the necessary assumptions of integrablitty. Thus

See Ref. 11 for an mxample from quantum mechanics.
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- dP (T -1- t + P(T 1 -ct dt

S P i [ 2~2 - -t)(l -t)dt

(- 1 -Z1 AL 2 r 2d

integrating by parts and collecting terms, the above expression assumes

the form

P (T) [(I + iPi t- 1 + E)+ I- )( - i-
C 2(Z) L P

P(r- 1 s)dsj
-C

+ 2s )P(T I - s)ds (28)
O)3 k2 1.z(s..2

Note that if -v - Z - 1 , we obtain the identity P0 (T) - P(T).

For long time or T - 1 >> 2c, we may remove P(T - 1 - s) from the in-

tegrands and

B[ (T 4 Z P(T - 1) -A;I1p(T - 1) (29)Pc C )  3 5k2 E

which is what we obtained for the direct problem, Eq. (22).

It is interesting to note that Mow (5 ) found an exact expression

for the inverse problem of a rigid sphere. However in that problem the

incident displacement U was found in terms of derivatives of U as wellc

as an integral. Equation (28) involves only weighted integrals for the

Incident stress. This operation could be built into an electronic "black
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box." The recorded signal P(T), considered as an input, could be de-

layed and integrated electronically to produce an output proportional

to the original incident pressure. The operations in Eq. (2P) thus de-

code the transducer output.

The solution of the inverse problem for the center pressure was

possible because CO '(w) in Eq. (6) was a linear combination of spheri-

cal Bessel functions. No such simple relation re-ults for the sear

stres- S, Eq. (6), or the displacement of the center of mass <U>, Eq.

(7).

THE METHO) OF SUCCESSIVE REFLECTIONS

Having obtained an exact expression for the incident pressure P (T)C

in terms of the center pressure in the inclusion, we can then look at

Eq. (28) as an integral equation for P(T) in terms of the incident pres-

sure. We will in fact .how that by this method an exact solution for

P(T) can be obtained by a finite time, step-by-step algorithm.

To L.,,in, we shift the time by

1 T - I + c and - T1 - c - s

so that Eq. (28) takes the form

+T -c) 2ff 2 [(1 )P(T 1  + (1 )P(r 1 2-

I - 1 .1 l P ( n~ ) d n ]

+ 3 -2 ). l P(rO[I(TI n-C)2

(E) 5k1  T1 _2 1

+ 2(r- n - ) - Z2]d
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We asbume that the center pressure is zero until T1 0, or that

the incident pulse arrives at the origin at time T 1 - c. These

conditions imply the following:

P(TC) 0 T1 < 0

Pc(C ) 0 T 1 < I - E

P( - 2E) - 0 Ti 2-c

0

J P(n)dn - 0
~TI-2E

Since Z is the half transit time in the inclusion, the center of

the inclusion does not see an internal reflection until time I 2c.

Thus for 0 < T1 < 2Z,

P (T + Z)- [Z(1 + --.)Per 1 ) + )i(T1  n)P(n)dnj (30)2(Z) 3

where

2 
2

K TI  n) -: -) (1
KGk1 -- ri) -

2 n )k + 2(T-r - ) -(1 -
1

This is an integral equation of the Volterra kind. Since X(T1 - n)

is a polynomial, Eq. (30) may be solved by successively differentiating

it with respect to TV, using the identity

.T ITI

d wt(t I - r)P(,i)dn - K(O)P(T 1 ) + I0 ( - P(n)dn
d 1 -0 1 aT1

This results in an ordinary linear differential equation with con-

stant coefficients for P(T I), with initial conditions determined at each

differentiation of Eq. (30), i.e.,



-33-

c 1 2(()+ + X(O)P(y)

+ X'(0)PT + K'(O)P(T)] (31)

with

S( E) ( 1 (31a)

C 2(e)2

Pc(1 ~-2~~ ~(1 + )i(o+) + ){(O)P(O +] (31b)
c 2 (E) 3 c

P(1 - ) B (rl + - 0+) + )io *+ + x) oP (0+) (310)C 2 (E)3

For our problem

()- (A - -' - 2-j

X(0) =( .

2

-k 2
jk1

h(0) l-

The solution consists of a particular solution determined by

( + 1 + ) and a transient solution of the form

3 lb rI

P(,[) - Yiaje 0 < Ti . 2E (32)
J.]

vhere the roots of the following algebraic equation are represented

by :
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c(l + )(i)3 + (0o)(is) 2 + )' (o)(ia) + X'(0) ,- 0 (33)

The three constants a are determined by the initial conditions, Eqs.

(31a), (31b), and (31c).

Once the solution is known in the interval 0 < TI < 2Z, the solu-

tion may be extended into the interval 2E < T < 4, since P(T- 2Z)

will be known, ae will

2Z

f T ZP(n) K(X1 - n)drn

A comparison between the solutions obtained in Eq. (21) (method

of residues) and Eq. (32) (method presented here) reveals a different.

in the number and magnitude of eigenvalues present in each. In Eq. (32),

there exists a finite number 6 ; in Eq. (21), there is an infinite num-

ber a This can be explained by the fact that the two forms of the

solution are valid over different time domains. Equation (21) is valid

for all time and must contain information about the periodic dlscontin-

uities in pressure due to reflections. The method discussed here ob-

tains a solution, Eq. (32), valid only between reflections (2nh < tI <

2(n + 1)c) and continuous in these intervals as long as'P is continuous.
c

We may note that this method may be applied to the conversion of

certain integrals of the form

e intH()d1f M

n"-M

where

H (a) f einth(t)dt

and the Sn(a) are periodic functions and bounded. One must also assume

N nthatE agn(a) =0 has no roots on the real axis.
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V. SUMMARI OF RESPONSE CHARACTERISTICS

We now recapitulate the main results of the various methods used

to analyze the response of an embedded elastic spherical transducer.

1. The pressure or mean stress response at the center of the in-

cluslon will be independent of the orientation of the inclusion relative

to the wave front and will only depend on the spherically sywmetric modes,

as shown in eq. (6).

2. The pressure response at the center of the inclusion will not

depend on whether the incident wave is plane or spherical. The stress

T Z" however, will be sensitive to the spherical character of the wave

front.

3. The higher free spherical vibrational modes of an embedded in-

clusion are characterized by cormgnsurable frequencies and radiation

damping independent of frequency.

4. The rate of decay of internal reflections will depend on the
-l

impedance ratio *" and will have a characteristic time yI given by Eqs.

(20a) or (20b) (see Table 1).

5. The pressure response for siill time is characterized by behav-

ior which is either "underdamped" (Eq. (25a)) or "overdamped." For the

,ormer, the overshoot above the small-time asymptote Is given Iy
() 2e- 2CYO/B for an incident step wave (see Table 1).

6. The inverse problem may be solvt3 for the incident pressure in

terms of the pressure at the certer of an embedded inclusion, from which

an exact aolution may be obtained for the direct problem by a reflection-

by-reflection method. T is is not possible for either the displacement

of the center of mass (except for a rigid inclusion) or the shear stress

at the center.

Furthermore, we will make some coaments on the difference between

the small-lime asymptote and the large-time behavior for a step input,

When tne incident wave encounters the inclusion at T - -1, the Inter-

nally transmitted compressional wave at normal incidence to the surface

will reach the center first at T - ; - 1, reflect at the leeward surface.

and return to the center at T - 3- 1. The expression Eq.. (25a) or

(25b) essentially only treats t'.e res <ns. fro. this normal-incidence
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Fig. Ii -Corjactue on the qualit iive response of an embedded inclusion

o-e to on irnciden! compressional step wave
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wave and neglects the shear-mismatch-induced wavies (, # 1) when the in-

cident wave is oblique to the spherical surface. Thus the reflections

in Figs. 8, 9, and 10 probably do not give the tota' respcnse after one

or two reflections, except if Z << 1. If we may be pprmitted to con-

jecture, the total response of the pressure 4t the cente- of the inclu-

sion for a step input may resemble Fig. ' for c n 0(l). The small-

time overshoot F and large-time overshoot may be useful as guides to

designing .luch a pressure traT 3ducer or interprtting the results of an

actual test.

Finally, we should mention that actuil materials have internal

friction or damping properties which were neglected here. To ir,clude

these properties, the elastic moduli can be replaced by the complex

counterparts as a function of frequency in Eq. (14). Material atLenu-

ation of sound waves would be important In a transducer made f plastic,

e.g., polyethylene (Figs. 4 and 9), and in fact might be desirable.

J1
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V1. ON Thni DESIGN OF A STRESS-ST1AIN TRANSDUCER

A,,- thte beginning of this veo:~u e outlined the important

characteris'JI:cs tlhat a SIress-strain transducer should have. I n th e

subsequeit'section~s we analvzed thie trans-ent response of a sphericJ.

pressure ransducer and discovered the parameters tI-hat affect the -

spon ,e ch~i:-acteristics. Oe propose here to describ. one possible do2-

si~i for such a tr;a.-36ucer. which may serve as a point of reference

for all apparent areas of feld testing, with the poselol- exception

ot ground-shock testing.

OVERALL DESIGN CONCIEPT

The -"coposed Atress transtl;!cer will sense the pr ;-e in a gro-un-

shock environment by meas,,iring the d ' a&ion, or &N -age strain at

the center of a spl-erical a.e.cIic-.aion 'z, neans of ctrain gagts.

The sphere is to be bonded to a ciU-c sample of the ground mate-

xland grouted in' a bore 'hc'-_e (Fig. 12).-lr spherical shape and

choic.e of average strain will' fe-uir in a 0rnoci s~iiie~

orientation telative Tro Lte wave kcront _ rvature t~wave front.

This unorthodox sh&.? may create some taictnproblams. Sev-

eral a _ rnatives are availal. . The sphere may be spli: into hemi--

ipheres, the gages Insta, 'ed, and the splhere fastened or cemented kco-

gether. Tis, how2ver, might destrc;- t-a, sphnerical symmirry of its

response. If the inclusion material has a low nieltkng point or can. be

so? 4dified from the liquid state aL low cr room t?,!"p ratures (e.g.,

epoxy), the eigen v~ght then be directly embedded in ilhe sphere before

soiidlfication. This method. although attractive, will usually mean a

large mismatch In acoustic Impedlance po between, inclusion ind matrix,

and hence large Internal reflection3 arnd - long transient decayv time.

tinder certain <1roumstances A large impedance miimatch might be pre-

ferred, especially in high pressure shocks where the pre,_311re in the

inclusion wgould be attenuated be' ,w the fracture 'Ire~t by t,,e Choice

of a soft material such as plastic or lead.

A third alternativa, the one preferred 'iere, iz, to drill IMai'

radial acce.ss hol,?, through the center and to cement serniconC_ 'cltor



-39-

Upper cylindrical
m jtrix half "
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Assembled matrix -inclusion system;
S' sphere and cylinder halves cemented toqether

(e.g. epoxy-type bonding)

I I

Fg. 2- Installation details of the cylindrical matrix -- spherical transducer assembly
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strain gages along the axis of the cylindrical hole several hole diam-

eters away from tr:e center, thereby avoiding stress concentration ef-

fects due to the tri-hole intersectio,. If the access-hole diameter

is small compared with the inclusion rauius, diffraction effects should

be small. Frequency resEonse, however, will be limited by the acoustic

impedance ratio and inclusion radius rather than the gage-hole diamecer.

MATERIAL, STREjGTH, AND SIZE kEOUIRETS

To minimize the spui!ous transients in the transducer which are

due to internal reflections, the inclusion material should be chosen

so that its scoustic impedance is as close as possible to that of the

ground matrix. For example, in a granite matrix (Table 1) aluminum

woul be the best choice for inclusion m -erial to minimize overshoot

and reflections.

In regard to the required strength of the transducer, it should

be remembered that the pressure at low frequencies in the inc'jsion may

be higher or lower than that in the free field. For a granite matrix

P/Po(w - 0) - 1.4 for a steel inclusior., P/P 0 1.3 foi titanium, and

P/P 0 - 0.81 for magnesium. Thus, while a magnesium inclusion can sup-

port a mtatrix pressure 24 percent above its fracture strength, a steel

inclusion can support a matrix measure only 72 percent of its fracture

strength,

The size of the device is limited by the seismic bore hole, the

size of t'- a strain-gage access holes, and the desired frequency rcsponse.

There are two "figures of merit" for the transient response. One

is the rise time or time to transient decay due to a step input, the

other is the frequency response as determined from the pressure ratio

versus wave number or frequency curves (Figs. 2 through 5). The rise

time or transient damping time is independent of the si.2 and depends

only on the acoustic impedance ratio of matrix and inclusion.

The frequency response is usually defined by the frequency at which

the gain A(tc) - P/P0 is up or down 3 dB (dB : 20 logloA) or where A

1.41 or 0.71. This frequency will depend on the radius of the inclu-.

sion. for a lead inclusion (4-1n. diameter) in a granite matrix, the



gain or pressure ratio P/P will be up 3 dB when the frequency is
0

around 10,000 cycles/spc. For a titanium inclusion the frequency re-

sponse is around 0 - 47 kc/sec for a 4-in. diameter inclusion. This

3-dB figure may be a little misleading, since the whole response for

titani'tm never varies more than about 4 dB (Fig. 5), and for aluminum

(upper curve Fig, 2), never more than 3 dB. It is far easier to extend

the freqaency response by matching the acoustic impedance than by making

the inclusion smaller.

ST1VIN GAGES AND ELECTROMAGNETIC INTERFERENCE

The ntra i sensors for this transducer are semiconductor strain
(12)

ges Te,. pi~,:-renistive cylindrical elements would be cemented

ir pairs along each of the tnree mutually perpendicular axes of the ac-

cess holes (Fig. 13). Te gages would be monnted on each side of the

center of the sphere at a distance of four hole diameters away from the

center to avoid stress concentration effects near the center. Each pair

would be connected in series, and the three pairs then series-connected

into h total of six gages forming one arm of j wheatstone bridge. The

output of the bridge would be proportional to twice the dilatation;

hence the pressure at the center of the sphere.

If transient electromagnetic radiation is a problem, the gages may

be isolated from the sphere which, if a conductor, will check the in-

trusion of elecrromignetic radiation into the interior th,i.gh the skin

effect. All but quasistatic fields would be shielded from the strain

gages.

FABRICATION AND INSTALLATION

The smal size of the gage-access holes will, of course, present

some fabrication problems. However, the use of specially designed

tweezers and probes and a low-powered microscope should make the prob-

lem tractable. Small-dianmter enamel-coated lead wire should be threaded

thiough the holes before Lnstalling the gages. 'The gages can be connec-

ted .n pairs and installed as such, so that all the leads exit from

only one access hole. With the leads soldered as one arm of a bridge.
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Note:
Gages (f '-Q(i- --- ®(1 connected !vn series
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Cemented semi-
conductor strain
gages (4 shown)

Access hWe normal

Snug press fi to this section riot

5 caps (3 shown),shw

_____-4" diameter-

F g. 13 - Hemnispherical sectori of a spherical pressure tiansdlucer
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only two leads need be carried back to a ground station into a bridge

through a coaxial or shielded cable. If electromagnetic radiatifn is

not a F-oblem, one of the leads may be grounded to the sphere itself.

An exploded diagram of the installed transducer is shown in Fig.

12. Rather than simply grouting the sphere in place with loose ground

material, we suggest a cylindrical sample of the ground be obtained if

possible and split into two smaller cylinders. On one of the ends of

each cylinder a hemispheric hole would be machined to fit the sphere.

Through one of the cylinders, a small axial hole would be ,eeded for

the transducer cable. The two halves would then be cemented (with some

epoxy, for example) to the sphere. The transducersphere in the cylin-

drical matrix would then be lowered into the seismic bore hole and grouted.

There are of course many other factors to consider in properly de-

signing an instrumentation system. Some of these, such as the auxiliary

electronic en-ipment, are beyond the scope of this study and the expe-

rience of its authors. However, no proper evaluation of the problems

can begin without a specific device at hand with concrete sizes and

specifications; we have attempted to provide these nuaberb and proper-

Lies for those with intimate knowledge and experi nce in field tusting.

The overall advantage of this design is not l.,wer cost or ease of

installacion (though that may be true), but that its shape, internal

construction, and installation allow the response and field results to

be directly compared with a theoretical analysis. The output of the

transducer cin be systematically decoded to determine the pressure in

the incident wave field.
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